Nutrition

- Range of diets eaten*
- Nutritional requirements
- How does an insects gain the required nutrients

Nutritional requirements

Nutrition = chemicals required for growth, tissue maintenance, reproduction and all other life activities

Is the outcome of **ingestion**, **digestion**, **absorption**, **metabolism** and **excretion**

- Ingested
- Synthesized by the insect
- Symbionts

Macronutrients

- Nitrogen (10 a.a.): proteins and amino acids
- Energy source carbohydrate, fat, protein
- Fatty acids
- Sterols (cholesterol or plant sterols)

Micronutrients

- Vitamins (vitamins B's, A, C & E)
- Mineral ions

Nitrogen

Amino acids Proteins

- Structural purposes
- Enzymes
- Transport and storage
- Receptor molecules
- Cuticular sclerotization (aromatic amino acids)

Nitrogen

Amino acids Proteins

Need 20 amino acids

- 10 amino acids essential
- the other 10 can be synthesized
- = TRANSAMINATION (transfer of an amino acid group from a pre-existing amino acid

$$\begin{array}{c} \text{CH(NH$_2$).COOH}\\ \text{CH$_2$.COOH}\\ \\ \text{aspartic}\\ \text{acid} \\ \end{array} \begin{array}{c} \alpha \text{ - ketoglutaric}\\ \text{acid} \\ \end{array} \\ \begin{array}{c} \text{CO.COOH}\\ \\ \alpha \text{ - ketoglutaric}\\ \text{acid} \\ \end{array} \\ \begin{array}{c} \text{CO.COOH}\\ \\ \text{CH$_2$.COOH}\\ \end{array} \begin{array}{c} \text{CH(NH$_2$).COOH}\\ \\ \text{CH$_2$.COOH}\\ \end{array} \\ \begin{array}{c} \text{CH$_2$.COOH}\\ \\ \text{CH$_2$.COOH}\\ \end{array} \\ \begin{array}{c} \text{CH(NH$_2$).COOH}\\ \\ \end{array}$$

Carbohydrates

- Chitin
- Energy

- (CH₂O)n
- Simple carbohydrates (mono & di-saccharides)
 e.g. glucose, fructose, sucrose (gluc + fruc), maltose (gluc+ gluc)
- Complex carbohydrates (polysaccharides)
 e.g. glycogen, starch, cellulose

Lipids

- Fatty acids
- Phospholipids
- Sterols

- Fatty acids C_nH_{2n+1}COOH
- Two forms saturated (no double bonds) and
 - unsaturated (1 or more double bonds)
- Cell membranes
- Moulting and Reproduction
- Energy storage e.g. Long distance migration (flight)

Sterols

Cholesterol → Animals

Plant/Fungal Sterols → Plant/fungus or from symbionts

- Affects development and morphology
- Precursors of the steroid hormones
 - e.g. ecdysone
- Cellular membranes
 - Essential structural components (provides support and rigidity)

Micronutrients

Vitamins

Visual pigments reproduction

- Fat soluble (e.g. provitamin A, vitamin E)
- Water soluble (e.g. B-vitamins)

Can not be synthesized Enzyme cofactors

Ascorbic acid

Nucleic acids

Inorganic compounds

• e.g. Sodium, potassium, calcium, magnesium, chloride and phosphate

Metals

• Iron, zinc, magnesium

Example: Australian plague locust 5th instar

Decreased growth rate

- nutrients diluted
- suboptimal ratio P:C

Between macronutrients

- protein versus carbohydrate

Nutrient composition of diet

Nutrient composition of diet

Between macronutrients

- protein versus carbohydrate

Within macro nutrients

- amino acid balance

Nutrition = chemicals required for growth, tissue maintenance, reproduction and all other life activities

Is the outcome of **ingestion**, **digestion**, **absorption**, **metabolism** and **excretion**

NUTRITION = IN - OUT

Pre – ingestive balancing

Choose

- What to eat
- Amount meal size
- Frequency meal frequency

Foods contain all the necessary chemicals but not in the correct balance

Which nutrients to regulate?

Nutrient requirements

- multiple nutrients

Protein

Carbohydrate

- nutrient *interactions*

a) Balanced food

Nutrient dilution

Manipulation:

• **Diluted**, 5-fold range

Powerful test of target defence

Undefended

• Defended – *active regulation*

African migratory locust - Locusta

Manipulation:

Two synthetic foods each, % P, C and bulk different

Nutrient requirements

Can meet nutritional requirements

Pre-ingestive

- What is eaten
- Meal size
- Meal frequently

But life not that easy

Host range for many insects restricted

Nutrient requirements

Growth and Rate of Development

Decreased growth rate

- nutrients diluted
- suboptimal ratio P:C
- Performance unaffected over a range of P:C ratios
- Similar body compositions

Foraging

Acquiring the correct blend of nutrients

Example: morphological

Modification of gut

Phloem feeders:

e.g. aphids, psyllids, scale insects

phloem = sugar & water > nitrogen

Filter chamber: modified gut to allow water and simple sugars to bypass midgut

NUTRITION = IN - OUT

Nutrition = ingestion - not absorbed - losses via post absorptive processing

Post – ingestive balancing

- Pre-absorptive
 - Differential release of digestive enzymes

(Clissold et al. 2010)

Change in alimentary canal morphology

(Raubenheimer and Bassil 2007)

- Altered transporters?
- Post-absorptive
 - Metabolism/Excretion

Deamination of amino acids (change N-compounds to C-compounds), excrete excess N

Dietary induced thermogenesis (removal of excess C-energy)

Excretion of inorganic ions

Example: physiological

Herbivores (& Carnivores)

e.g. Locusta migratoria

extraoral digesters??

Example: physiological

NUTRITION = IN - OUT- not absorbed Locusta migratoria Carbohydrate Protein Ingested PcpC PcpC Carbohydrate Chymotrypsin Amylase Protein PcpC PcpC

Example: physiological

Locusta migratoria

Example: physiological / behavioural

Protein - demainate and excrete N, use the CHO backbone as energy

C-based (carbohydrate and lipid)

increase metabolic rate

Example: morphological / physiological

Symbionts

- extra- or intracellular microorganisms (bacteria, yeast, protists, fungi).
- Contribute to the insects nitrogen (a.a. synthesis),
 vitamin, sterol and/or carbohydrate economy

Post-ingestive balancing

can only do so much

What happens when insects are forced to eat a suboptimal diet?

Specialist feeder

e.g. *Locusta migratoria*, grass feeding specialist

Generalist feeder

e.g. *Schistocerca gregaria,* feeds on grasses and forbs

Regulation of nutrient intake requires

- 1) Assessment or knowledge of the nutrient composition of foods
 - directly by tasting
 - learning
- 2) Knowledge of the nutritional status of the insect
 - haemolymph composition
 - status of nutrient reserves e.g. fat stores
- 3) A method of comparing food and state
 - Controlled by the sensitivity of *peripheral taste receptors* which are regulated by metabolic and physiological feedbacks
 - learning from previous experience

Summary

Mandible sharpness

Summary

Nutrition

what insects need

how do insects balance demand and supply

Further reading

Chapman, 1998; Ch 4

Chapman & de Boer 1995, Ch 9

Chown & Nicolson, 2004 Ch 2

Nation, 2008; Ch 3

References

Chapman, R. F., 1998. The insects. Structure and function. 4th edition, Cambridge University Press, UK

Chapman, R. F. & de Boer, G. F. 1995 Regulatory mechanism in insect feeding. Chapman & Hall, USA

Chown, S. L. & Nicolson, S. W. 2004 Insect physiological ecology. Oxford University Press, UK

Clissold, F. J., Tedder, B. J., Conigrave, A. D. & Simpson, S. J. 2010 The gastrointestinal tract as a nutrient-balancing organ. *Proceedings of the Royal Society B: Biological Sciences* **277**, 1751-1759.

Gullan, P. J. & Cranston, P. S., 2005. The Insects. An outline of entomology. 3rd edition, Blackwell Publishing Ltd, UK

Nation, J. L. 2008 Insect physiology and biochemistry, 2nd edition, CRC Press, NY, USA

Additional reading -

- Behmer, S. T. 2009 Insect herbivore nutritient regulation. *Ann. Rev. Entomol.* **54**, 165-187.
- Raubenheimer, D. & Simpson, S. J. 2004 Unravelling the tangle of nutritional complexity. In *Yearbook* of the Wissenschaftskolly zu Berlin.
- Raubenheimer, D., Simpson, S. J. & Mayntz, D. 2009 Nutrition, ecology and nutritional ecology: toward an integrated framework. *Funct. Ecol.* **23**, 4-16.
- Simpson, S. J. & Raubenheimer, D. 1996 Feeding behaviour, sensory physiology and nutrient feedback: a unifying model. *Ent. Exp. Appl.* **80**, 55-64.
- Simpson, S. J. & Raubenheimer, D. 2000 The hungry locust. *Advances in the Study of Behavior* **29**, 1-44.
- Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. 2004 Optimal foraging when regulating intake of multiple nutrients. *Anim. Behav.* **68**, 1299-1311.